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used in the place of the unknown true noise covariance matrix in the construc-
tion of the optimum filter for signal detection.
single signal specified by a real or a complex vector, we investigate the extent
of this loss by obtaining an exact confidence bound for the realized signal to

noise ratio.

selection of features.
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ABSTRACT

There is loss of efficiency when an estimated noise covariance matrix is

crimination between a number of given signals.
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In the case of detecting a

We also give an estimate of this ratio which is useful in optimum

Some of these results are extended to the case of dis-
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1. INTRODUCTION
Reed, Mallet and Brennan (1974) studied the loss of power in signal detec-

tion when the noise covariance matrix is unknown and the estimated matrix from

sampled data on noise is used in the construction of the optimum filter or the
linear discriminant function. This was done by computing the expected value

F of the signal to noise ratio based on the estimated filter and comparing it with
» the corresponding ratio when the covariance matrix is known. In this paper,

- we extend the study of the above authors in several directions.

An exact confidence bound is provided for the realized signal to noise ra-
tio when an estimated filter is used. A test is given for examining whether

a given set of features is sufficient for signal detection. A criterion is pro-

@

vided for optimum selection of features. Finally, the problem of discrimination
with multiple alternative signals is discussed. We consider both the cases where
the signal is represented by a real or a complex vector.
The following notations are used. A' denotes the transpose of a matrix
A when its elements are real and A* the conjugate transpose of A when its ele-
ments are complex.
i) X - Np(u,E), i.e., a real p-vector X has a p-variate real normal
distribution with the probability density function (p.d.f.)
- - -1
(2m 7P/ 2[z] Mexp BsGr-w) T Hx) 1. (1.1)
i1) X - Np(u,Z), i.e., a complex vector X has a p-variate complex nor-
. mal distribution with the p.d.f.

(M Plz| Yexp Flx-u)*r  (x-1) 1. (1.2

iii) Y « Nr S(M,E,V), i.e., a real r x s matrix Y has the p.d.f.
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iv) Y - Nr s(M,Z,V), i.e., a complex r x s matrix has the p.d.f.

4

(m 8|27 v| Texp [-trz‘l(Y-M)v‘l(Y-M)*]. (1.4)

v) S -~ wp(f,Z), i.e., a real p x p positive definite matrix S has the

Wishart distribution on f degrees of freedom with the p.d.f.
27PE/2 [r (e/2) 17 2] /2|5 EP D 2 (gl (1.5)

where

I (a) = np(p-l)/4 g (a- i1 ).
P 1=1 2

vi) S ~ Wp(f,Z), i.e., a complex p x p positive definite matrix S has

the complex Wishart distribution with the p.d.f.

! tfp(f)1-1[Z|_f[VIf-pexp(-trZ-IS) (1.6)

where

. p
Tp(a) - p(P-1)/2 (a-i+1).

i=1

vii) S - Wg(f,Z), i.e., a real p x p positive definite matrix has the

p.d.f.

IZI-f/ZIS‘(f-p-Z)/zg(—%trz-ls)' (1.7)

viii) S -~ Wg(f,z), i.e., a complex p x p positive definite matrix S has

the p.d.f.

Iz 7E)s1 £ Pg(trrlsy. (1.8)

- e oea.a s - — [ B



2. SOME MULTIVARIATE DISTRIBUTIONS

In this section we derive some new multivariate distributions which arise
in the study of problems of signal detection. The actual applications are dis-
cussed in Section 3.

Consider the p x p positive definite (p.d.) matrices

, ' (2.1)

{ partitioned by the first r and the rest s = p - r of rows and columns, the Schur

complements of order r x r

°
f S, =8, -8, S s, L, =%, -t Ioa (2.2)
- 1.2 °11 12°22°21° “1.2 ~ “11 12722721 )
and the regression coefficients of order r x s
_ -1 _ -1
b = 812822, B = 212222. (2.3)

We have the following lemmas which follow on standard lines (see Rao (1973, pp.

538-539) and Srivastava and Khatri (1979, p. 79)).

lemma 1. Let S -~ Wp(f,Z) where p = r + 8 and S b and B be as

15°51.2°%1. 20
defined in (2.1)-(2.3). Then the following hold:

1.) S1 2 and (b,Szz) are independently distributed with

S - Wr(f—s, 21‘2) (2.4)

1.2

S,, ~ W (f, L (2.5)
S

22 22)

and the conditional distribution of the r x s matrix b given 522 is
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2.)

3.)

4.)

b~ N_ (8, -1 ). (2.6)

r,s'8271 22599

The unconditional (marginal) p.d.f. of b obtained by integrating over

S is

22

A / /
s -£/2 -s/2|.~-1 o1 -(f+1) /2
nrs/z lzzzl lzl.zl |222 +(b'6) Zl.z(b_B)l

f
Tsﬁﬂ
which we denote by

(2.7)

Tr,s(B’f’Zl.Z’ZZZ)'

If b, = Z-11 (b-B)Z% where Z;5 and ZZ;E represent s etric square
17 %12 22° 1.2 22 TP yomm q

roots, then

bl ~ Tr,s(o’f’Ir’Is)' (2.8)
If u= (I +b b')-% b, = b, (I +b'db )-% then the Jacobian of the trans-
r 171 1 1'"s "171 ’

formation from b1 to u is lIr-UU']_(r+S+1)/2 and hence the p.d.f. of

u, derived from (2.8), is

" f+r

r (=7
s 2 P _UU,l(f—s—l)/Z (2.9)
1£8/2; (55 r
s 2
which we denote by
f+r
17T (
Ur,s( 5 ). (2.10)

If s > r, the p.d.f. of B = (Ir+blbi)_l’ derived on standard lines, is




f4+r-s S, ,-1 (f-s-1)/2 (s-r-1)/2
e 5=, 1 18 '1-8]
where
T _(a)T_(b)
B_(a,b) = ————

Fr(a+b) ?

which is the r-variate beta distribution denoted by

f4+r-s s
Br( 7> 5’). (2.11)
;5 1_1.
If b, = (b—B)Ezz, then the p.d.f. of By = (21_2+b2b2) is
f+r-s, s -1 (£-1)/2 (f-s-1)/2,.-1 (s-r-1)/2
B == 301771z ,l 3] 21578,
which will be referred to as
f4+r-s s -1
Br( L 21.2 ). (2.12)

Lemma 2. If S - Wp(f,Z) where p = r + s, then 51.2 and (bl’SZZ) are inde-
pendently distributed, and the distributions of the various statistics considered
in Lemma 1 are as follows.

1.) S ~ Wr(f—r,Z

1.2 S ~ ws(f,Z

1.2 So2 ). (2.13)

22

The conditional distribution of b given 522 is

y - -1
y b -~ Nr,s(B’Ll.Z’SZZ) (2.14)
2.) The marginal distribution of b is
! b - Tr,s(e’f’zl.Z’ZZZ)
n




with the p.d.f.

T (£+r)
s -f -8y =1 * -1 -(f+r)
L + (b= -
T Izzzl ]‘31.2' ]zz2 (b-8) 2], (b B) | . (2.15)
n rs(f)
=L L -
. * -}i -;i
3 = = * . .
: 3.) Ifu bl(IS+b1b1) (Ir+b1b1) bl’ then its p.d.f. is
ﬁ T (f+r) |
' (f+r |
* S el |
r ) Ts(f)
»‘ |
| ¢ which is denoted by
u -~ Ur,s(f+r)' (2.17)

4.) If s > r, the p.d.f. of B = (Ir+blbf)_1, derived on standard lines, is
[f3r(f+r-s,s)]“1|13|f‘3|1—13|S‘r
which will be referred to as r -variate complex beta distribution

ﬁr(f+r-s,s). (2.18)

¥

Writing by = (b-8)I%, the p.d.f. of By = (I +b2b§)'1 obtained by

0 1.2

a transformation from (2.15) is

- -1 f f-sye=-1 _ s-Tr
_ (8 (f4r-s,9) 17 [Ty LM B 1" 780E] , - B
i‘ which will be referred to as
Br(f+r—s,s; 21.2). (2.19)
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3. MAIN THEOREMS
In this section, we use the results of Section 2 to derive distributions

of some functions of a p x r matrix A whose columns represent given signals and

-1 . . .

f °S the estimated noise covariance matrix of order p x p. These distributions
are used in the next section for drawing inferences on the basis of observed
data in signal detection. First we consider the real case and quote the corre-

sponding results for the complex case in the remarks following the theorems.

Theorem 1. Let A be a p x r given matrix of rank r (< p/2) and S - Wp(f,Z).

Define the r x r matrices

1

= (A'S'IA)‘I, T, = (A'z'lA)' (3.1)

[72]
|

A

1..-1,.-1.-1_ %

B =22 s s sy st (3.2)
“a A N :
Then S, and B are independently distributed with
S, ~ wr(f-p+r, QA) (3.3)
B < B (fiEZi 5y (3.4)
T 2 2
where the Br distribution is as defined in (2.11) and s = p - «r.
Proof. Let Al be a p x s matrix of rank s(=p-r) such that AO = (A : Al)
is nonsingular and AiA = 0. Then Ab SAL ~ W (f A'VA ) Writing
11 e11 912
1 - =
2580 T 20549
Va1 21 %2
V, = V.. =V, Vily 8 =9 . - a-1g
1.2 11 12722721 "1.2 11 - 12%22°n
~ -1 a2 (3.9)
by = €15 (Vy,V55 = 91959)%; :
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and using Lemma 1

Vi g ~ Wolf-ptr, &) ) (3.6)
=1 f+r-s s
(1+b b))~ - B (B2, 5, (3.7)

Further V1 9 and (I+b1bi)_l are independently distributed. Now

-1
= ' - ' ' '
Vl.2 A'SA A SAl(AlSA) AlsA
= A? '
A ASAA A
= A' T’
91.2 A AEA A

Then from (3.6), S, = (A'A)_lvl Z(A'A)-1 has the desired distribution (3.3).

A

Further, using the formula

-1
v, v, 0 0 I 1 L

- N N V2 (B3 =UppV5))
Va1 Yy 0 Va2 V22 Vo1

we find, after some computations, that B as defined in (3.2) is the same as

(1 + blbi)—l with b. as in (3.5). Then (3.7) establishes (3.4). Theorem 1

1
is proved.

Remark 1. If S ~ Wﬁ(f,Z) as defined in (1.7), then S, and B as defined
in Theorem 1, (3.1) and (3.2), are independently distributed. Further, B has

the same p.d.f. (3.4) as in Theorem 1 independently of g, while the same is

Remark 2. Let A be a p x r complex matrix of rank r(< p/2) and S - Wp(f,S).

re
not true for S, .
m Then
4 |
:4.."~ L.L.:l_v e 2 \_"ﬂNL‘ SR P PRIy
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s, = (2" ™h L w (fpr, 1)) (3.8)
r A
and
B = zf SZI(A*S'IZS'IA)'ls;lzf - ér(f+r—s,s). (3.9)
Further S, and B are independently distributed.

A
Remark 3. If S is complex and has the distribution wg(f,z), then S, and

B as defined in (3.8,3.9) are independently distributed. Further, the distri-

bution of B is as in (3.9) independently of g, while the same is not true for

SA'

Theorem 2. Let B be p x p positive definite matrix such that

f £

1 72
B~Bp(2,?mAL 0 < B <A.
Consider the partitions
fn A 811 By
A= , B =
b1 A Ba1 B22

i

where A ., and B are r X r matrices, and the Schur complements A and B

11 11 2-1 2.1°
Then the statistics Bll’ BZ-l and
U= (a, -8 0 B, - a ATt ) (871 + (a, - B ) 71R(3.10)
2.1 2°1 21 21711711 11 11 11
are independently distributed. Further
£, £,
B, - B (=%, =2 A,), 0<B . <A (3.11)
11 r22° 7117 - 711 - "11°
fl-r f2
~ —_— 2
Brop "B (T T M) 0SBy A (3.12)

LA S S
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U~ Up-r,r(i_o as in (2.10). (3.13)

The results of Theorem 2 were established by Khatri and Pillai (1965) when

A= Ip' Their proof can be easily extended to our case by noting that
lal = [a ;1 Ta, 4t I8l = [B 1 B, ||
la-B] = |

|
App-Bygl 14y -8y | i -uu]

and then computing the necessary Jacobians of the transformations.

Remark 4, In the complex case, let B and A-B be Hermitian positive defi-~

nite matrices such that

B~B(f ,£,5 A).

1°%2°
Then, Bll’ Bz.1 and U as defined in Theorem 2 are independently distributed.
Further
By, ~ B_(£,6,5 Ap), (3.14)
By, - ~p_r(f r,,5 Ay 1), (3.15)
and
U U (£, as in (2.17). (3.16)

Theorem 3. Let X and Y be independent univariate gamma, G(l1,m), and beta,

Bl(m-c+l,a), variables with» the p.d.f.'s

1 -x_m-1
17
TGy & X X7 0O, m>0 (3.17)

and




e + 1 zk"n
1
}l T(a) k=0 k!
' if n = 0,1,2,... and a # 0,-1,-2,..., where Y(x) = I''(x)/T(x), and the last term
?‘ is zero if n = C.
v
A
.L PP o Py PO ” . o = 5 A - 20 A o y .-,1
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1

Blu—ctl.a) ym_c(l-y)a_l, 0<y<1l,a>0, mctl > 0. (3.18)
]

Then the p.d.f. of Z = XY is

e_zzm-l T (atm-c+1)

I'(m) T (m-c+1)

¥(a,c; 2z) (3.19)

where ¥ is the confluent hypergeometric function of the second kind defined by

1 (7

¥(a,c; 2) = I(a)“b

271 (146) "2 Lexp(-zt) at (3.20)

(see Erdelyi et al (1953, p. 255) or Lebedev (1972, p. 268)).
Proof. The result is obtained by writing the joint distribution of X and

Y and making the transformation
Z=2Xt, t=Y/(1-Y).

Remark 5. The function ¥ (a,c; z) exists for all a and c and has the fol-
lowing representations in infinite series

I'(l-c) T(c-1) zl-c

¥(a,c,z) = T(lta-c) 1F1(ase; 2) + SIOR

lFl(l+a-c,2—c; z)

provided ¢ # 0,*1,#,,..and T(c+l) = cT(c) for any ¢ # 0,%,....

k
™ T (@)
I (a-n) k=0 k! (n+x)!

¥(a,n+l,z) = ' W(a+k) - Y(1+k) - v(n+l+k) + log z]

n-1 (-l)k(n-k—l)!(a—n)k




A el aast o

o Ifa=-my,m=0,1,...,andc=n+1,n=0,1,..., then

(-1)™ (m+n) !

¥(-m,n+l;2) —

1Fl(—m,n+1;z)

where

oy o T(e) zt_a-1 c-a-1
lFl(a’c’z) = m l;le t (1-t) dt.

F 4. TESTS FOR ADDITIONAL INFORMATION
Let us consider the case of discrimination of a given signal from pure noise.
A question of some practical importance is the number of features to be measured.
P Let us consider a signal § with p = r + s features and an estimate f-lS of the
unknown I based on f degrees of freedom (or f samples from noise process) in

partitioned forms

8 I P S11 512

§ = , I = , S = (4.1)

8y I Py 571 S22

where 51 is an r-vector, 52 is an s-vector, le is an r x r matrix and so on.

The signal to noise ratio based on § (all the features) is 6'2-16 while that
1

-
based on 62 is 6222282. If 61 is redundant, then
- [] -1 [] -1
. 0= 82778 - §;15,8,
b
' 1 1
- - 197 - = -
& = (6)788)) "T5.1(8,-885) 5 B = Iy5Tp) (4.2)
-
. which implies that §, = BS,. We develop a test of the null hypothesis
e
= Hy: 6 = 88, (4.3)

h aerrast anten il anbine §

L]
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on the basis of the information provided by S.

We first consider the case where § and S are real. From Lemma 1, Sl~2 and

-1 . . .
b = 812822 are independently distributed for given 822 with

S1.p ~ W.(f-s,I

1-2)’

b~N_ (8 L

L. r,s ’21-2’S

; ). (4.64)

Then from the standard MANOVA theory (see Rao (1973, pp. 547-550) and Srivastava

El and Khatri (1979, pp. 166-172)), the test statistic for testing H, in (4.3) is
(8,-b8,) 'sT. (6. -b6,)
2 f-p+l 1 2 1.2°71 2
T = - 1 (4.5)
o g
82522%2

LA SIS St i

which has Hotelling's T2 or F distribution on r and (f-p+l) degrees of freedom.

An altermative way of computing (4.5) is

2 _ fp+l (8’5716
T 1l
825225,

-1]. (4.6)

The test (4.5) is important since in practical applications with an estimated
covariance matrix, inclusion of too many features may reduce the power of dis-
crimination (see Rao (1971)).

Let us consider the case of k signals represented by the columns of a p x k

matrix A. Writing

A = (4.7)

where Al is r x k matrix, we ask the question whether Al is redundant. The test

P NE AP DU PN WO . VN WU UL U (U W VUL RPN SSPO RN W S S AP S S S O U U O SR SO AT RSN W ~_A:_'J
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for this again follows from the general MANOVA theory (see Rao (1973, pp. 547-550)
and Srivastava and Khatri (1979, pp. 166-172)). The likelihood ratio test gives
the A criterion

.- Is; .,

1, -1
8y, +(8,-by) (855578,) 7 (8, -ba,) !

5] I55,] (5.8
= Y * T .
[S+aA"] 1522+A2A2[
which is distributed as
Ar,f-s,k). (4.9)

Several approximations for computing the significance of an observed value of

A are described in Rao (1973, pp. 555-556) and Srivastava and Khatri (1979,
pp. 176-186).

Remark 6. When S has complex Wishart distribution, the corresponding test

5%c7ls = 575 ls
for HO. z 222285 is
(5,-b8.) ST, (5, -bs.)
2 - Emprl D179 S1-00h 7P (4.10)
r s s-1ls
2522%;

which has complex Hotelling's T2 or F-distribution with 2r and 2(f-p+l) degrees

of freedom. An alternative way of computing (4.10) is

* -1

TZ . f-ptl [5 S § _ 1].
f 5ol
252272
For the case of k signals represented by the columns of a p x k matrix
Als 1ihood s
A= Az- , the likelihood ratio test for HO.AZZZZA2 is

J U T U R P S DU . S U VU IR T UL T ST IRV IS ¥ U, P R J



\"Tef T 2 i A2

- * -1 -1 *
ho= sy Hl7]8) 48 =b8,) (2,8578,) 7 (8, -bay) ]

= (lSI/Is+AA*|) + (Iszzl/lszz+A2A;|). (4.11)

which is distributed as

AQ2r, 2(f-1), k).

5. LOSS DUE TO ESTIMATION OF I IN DETECTING A SIGNAL

If T, the noise covariance matrix, is known, then the optimum filter for the

detection of a signal § is G'Z-lX (or 6*2_1X) when X is a real (or a complex)
vector observation. ' [ In the sequel we consider both the real and complex cases
indicating the expressions for the complex case within brackets as above]. The
signal to noise ratio, which is an index of the efficiency of discrimination,

16). If T is not known but an estimate f-lS

- *
in such a case is §'Z 16 (or 8§ ¢
based on f degrees of freedom is available, we may use the estimated filter

- *
£5'S 1X (or £6 'S 1X). The signal to noise ratio in such a case is

S - * -1.,2
0(S,I) = M, or p(S,I) = £s & . (5.1)
re~lo-1 * -1..-1
§'s 7Is 7§ § § 78 78
By the Cauchy-Schwartz inequality this is less than
- * -
52725 (or 87r71e) (5.2)

so that there is loss of information in using f-ls instead of I.

The efficiency of the estimated filter can be examined by considering the

ratio of (5.1) to (5.2)

o - o - U, - 5 » - PR S U U W W S T ORI WY U WA U S U G 2 (VP WG SNy S
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(s's™1sy2 (55~ Ls)? (5.3)

or
128-1 1..-1

B = bl
§) (%7 Ls) (s* s 1rs1s)

i leycstsT

!
Using Theorem 1, (3.4), by putting r = 1 and s = p-1, the distribution of (5.3)

is obtained as univariate beta
f-p+2 p-1
Bl( 5 3 ), (or Bl(f—p+2, p-1)). (5.4)

The distribution (5.4) in the complex case was earlier obtained by Reed, Mallett
and Brennan (1974)., By computing the expected value of the distribution, they
provided the rule f = 2p for maintaining an average loss ratio of better than
half. But the distributions (5.4) can be used in other ways. For instance,

by using incomplete beta tables one can determine the value of f, the number

of samples on noise for estimating I, to ensure for any given p an efficiency
larger than any given value with an assigned probability.

The signal to noise ratio (5.1) for any realized value S depends on the
unknown I, which makes it difficult to assess the performance of any particular
estimated filter. We suggest two ways of drawing inference on (5.1) in terms
of known quantities.

First, we may find a constant c¢ such that

- X -
£ [p(s,0)-c£6's 1812, (or L[ &S,5)- &£87s™161) (5.5)
is a minimum. The optimum c is
- * o
E[ 0(S,2)-8's715] E[5(5,5) 8 s 16 (5.6)
1.2 » {OF * -1 .2 :
fE(S'S 78) fE(S S 78)

which is easily evaluated using the independence of p(S,IZ) and 8'5_16 (or 5(s,2)
and 6"s16) and the distributions derived in Theorem 1, (3.3) and (3.4) or (3.8)

and (3.9), by choosing r = 1 and s = p-1. The value of ¢ turns out to be

. . .
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(f£-p+2) (f-p=3)

£(£f+1) (5.7)
in either case. Then defining the estimated Mahalanobis distance Di = fG’S-lé
% _
(or £6 S 16), we can use the known quantity
(£-p+2) (f-p-3) .2 _ -1 +3, .2
s )= -Epa - By (5.8)

as an approximation to 0(S,IZ)(or 5(S,I))for judging the efficiency of an esti-
mated filter. Note that if f is not large compared to p, then Di overestimates
the efficiency of discrimination.

The formula (5.8) is also useful in examining the gain in discrimination
efficiency by increasing the number of features. For instance, the estimated
signal to noise ratio with a subset of r features out of p, represented by a

vector 6. is

1
(f~x+2) (f-r-3) 2
e+ Dr (5.9)
here D2 = £6'S°1s. (or £5.5716.) with S th tition of S arisi t
where r = 1 11 1 or 1 ll 1 wl 11 as e par ion o aris ng ou

of the first r columns and r rows. If p > r, then Ds 3_D§ but (5.9) may be

> or < or = (5.8), and an appropriate decision may be taken depeénding on the actual
relationship. It is possible that with an estimated S, the inclusion of a large
number of features may decrease the discrimination efficiency, a phenomenon
observed in several multivariate situations (see Rao (1971)).

A more satisfactory approach is to determine a confidence bound for p(S.I),
(or 35(S,Z)) in terms of known quantities. This is done by using the distribu-

tion derived in Theorem 3 of Section 2.

From (5.4)
y=088,0 g (fopt2 poly f ¢ o §§§4%l - B, (£-p+2,p-1) (5.10)
srgs 12 2 sTsLs

/
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as beta variables, and
51715 1 f-pt+l - 8%l ‘
X = 1 " G(‘E, 2 ), lor X = *—_1 ~ G(1,f-p+l) (5.11)
§'s 7§ § S 78§

as gamma variables using the notation of Rao (1973, p. 164), and, further, X

and Y (or X and Y) are independent. Then from Theorem 3

Z=lXY=£&L§._°rZ=XY=M (5‘12)
2 2 2 2
D D
P P

- * _
where D2 = f§'S 16 (or £6 8 16), has the confluent hypergeometric distribution (3.19)

1 -z m~-1 T(at+m-c+l) .
(o) e 2z —?TE:E:IT_ ¥ (a,c; 2) (5.13)

which is independent of the unknown I with

m = f:%il, a-= 2%1’ c =-%, (oxm = f-p+l, a = p=-1, ¢ = 0). (5.14)

If z, (or a) is the lower a % point of the distribution, then

22 2z

P(o(S,I) > —2 D) = 1-a, or P(5(S,5) > =% D°) = 1-a (5.15)
- £ p —f P
so that
Zza 2 za 2
p(S,I) Z-—E_ Dp, or 5(S,Z) l'g— Dp (5.16)

provides a lower bound to the realized signal to noise ratio at a confidence
level of (1-a)%.

The equation satisfied by z, is
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fl r & (£-p) /2 (p-3)/2 fza/y 1 (£-p-1) /2
-p p- -x (f-p-

a = y (1-y) dy —_— e d

0o r&hHrEE o L " ’
and Z 1is

a

1 ] /vy
I (£+1) f-p+l ., _ p-2 fza 1 -x_f-p
j; DIy 7 Y d}jo TG ¢ ¢

The values of z, (or 2a) can be found by a suitable computer algorithm. For
instance, the multiplying coefficients (see 5.16) for the observed Mahalanobis
distance to provide 50% and 95% lower confidence bounds to the realized signal

to noise ratio are given below for p = 4 and f = 8, 12 and 16.

Zzu/f ia/f

f 50% 95% | 502 95%

8 .345 .075 381 .141
12,525 .188 |.553 .283
16 .631 .281 [.649 .377

Detailed tables will apnear in a later communication.

6. LOSS DUE TO ESTIMATION OF I IN MULTIPLE DISCRIMINATION
Consider the rrohlem of identifying a received message as noise or one of

r possible signals § ..,Gr which we represent by a p x r matrix 4 = (¢

1"

Further, let X be a vector of observed features with covariance matrix I and

E(X) = §, when the i-th signal is transmitted, i = 1,...,r and E(X) = 0 for

1
noise. Then the overall efficiency of discrimination using X can be judged by

a function of the eizen values of

A A A AL AL A e e a8 ERr V. —

ev. - A T I A S Pl A A A A ‘Y"‘T
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*
AA' (or AL ) with respect to T (6.1)
which are the same as the eigen values of
- * _
szl (or 2%y, (6.2)

- * _
This provides a generalization of the signal to noise ratio §'L 16 (or 6 £ 16)
in the case of a single signal.
If the noise has NP(O,Z) distribution, then the decision function for the

detection of r signals is based on the sufficient statistics
- % _
558 1% (or 5.7 1y, 1=1,..0,r (6.3)

- * -
which can be written as the discriminant vector Y = A'L 1X (or A 1X) with the

. , vo—1l *_ -1 ro-1 * _1
covariance matrix A'C A (or A I "A), and E(Y) = A'Z 8, (or A T §,) for the
i-th signal. The efficiency of discrimination in using Y instead of X, using

the formula (6.1) depends on the eigen values of

(A'z'lA)(A'z'lA)’l(A'z'lA) with respect avz7la (6.4)

*
(or with & in the place of A), which are the same as those for X as expected.
If £ is not known but an estimate f—ls is available, themn the estimated discrim-

inant vector is

~ - * _

Y=4A'S 1X (or & S 1X) (6.5)
and its efficiency depends on the eigen values of

1

les~laytars™1a (6.6)

B = (A's"lA)(A's’

*
(or with S' replaced by S ), which is a generalization of o(S,I), (or 5(S,I))

as considered in (5.1).
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. In Theorem 1, we found the distribution of the matrices (A'S-lA)-l and

. -1 ! -1 .} * 1 -
. (A'z 1A)/EB(A'Z lA)'i in the case of real variables, and of the matrices (A'S lA) 1
- * -1, b k-1 Y

“E and (A £ "A)°B(A T "A)? in the complex case. We use these distributions in ex-

amining the realized efficiency through the estimated discriminant vector.
For this purpose, we consider two particular functions of the eigen values

of B, one of which is the sum

Z, = tr B = tt [(A's’lA)z(A's"lzs‘lA)'l]
= zs's~tacars s~ iay " ars s, (6.7)
11 1

* *
(or with Si and A' replaced by Si and A ), and another is the product

va-l, 2 * -1
Z2 = IBI -2 fl All , {or Iﬁ fl All (6.8)
|ars™ zs™ A |a"s™7zs A
Using Theorem 2
_ F-pH2r, (T .-l * -1
E(Z)) = 5 [g 84T 78, (or 86,7776 )]
1 - - * -
\ = fgffgf! Lerca'z™2a) (or 2*271a) ] (6.9)
4
and
b
. r
E = ﬂ.‘.zr—-iﬂ ( ' -lA 2 *Z-IA 2) . 6.10
E"A E(Z,) [121 rrerrs la'z™a1¢ or Ia 1 ( )
re

The formulas (6.9) and (6.10) enable us to choose a suitable value of f for given

p and r to keep the average loss at a desired level.
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